Impaired hemodynamics and neural activation?
A fMRI study of major cerebral artery stenosis
M. Hund-Georgiadis, MD; T. Mildner, PhD; D. Georgiadis, MD, PhD; K. Weih; PhD; and D.Y. von Cramon, MD, PhD

Abstract—Functional MRI motor mapping was performed in two women with unilateral high-grade stenosis of the middle cerebral artery (MCA) to determine the influence of impaired hemodynamics on the blood oxygenation level dependent (BOLD) response. In both patients no structural lesions were present in primary motor pathways. A redistribution of the motor network to the healthy hemisphere was the main indicator of chronic hemodynamic compromise.

NEUROLOGY 2003;61:1276–1279

Patients with severe cerebral arterial stenosis often exhibit only mild persisting neurologic impairment in spite of a decreased hemodynamic reserve (“misery-perfusion syndrome”).1 Discrete structural damage on morphologic MRI often coincides with wider areas of hemodynamic compromise as assessed by PET.2

Functional mapping with fMRI or PET is based on the tight coupling between regional blood flow and local metabolic demand, thereby indirectly depicting regional neuronal activity. Little is known about this dynamic linkage in patients with impaired hemodynamics. Previous research provided evidence for changes of neural activity, which correlated with the severity of hemodynamic impairment in the somatosensory system: a graded reduction of the initial somatosensory evoked field component (N20) and an augmentation of the second field component (N30) as a compensatory mechanism were described.3 The existence of a neuronal reserve mechanism, supplementing hemodynamic reserve strategies in an attempt to maintain neuronal function, thus appears probable. The current study assessed the influence of impaired hemodynamics on the fMRI blood oxygenation level dependent (BOLD) signal changes and their relation to neural activation of the involved functional network in both hemispheres.

Methods. Case reports. Patient 1. A 38-year-old strongly right-handed woman had a transient facial numbness and paresis mostly involving the lip muscles. Three-dimensional structural MR imaging revealed a small T1-hypointense lesion in the supratentorial white matter adjacent to the right inferior parietal lobule.

Patient 2. A 34-year-old right-handed woman repeatedly experienced several short episodes of speech arrest, lasting for about 20 seconds. Structural MR imaging showed a small inhomogeneous lesion in the territory of the left A. sulci precentralis. The motor cortices were structurally intact.

Neurologic examination had normal results in both patients at the time of the MR session, performed 14 and 20 months after symptom onset in Patients 1 and 2.

Full right-handedness was assessed based on the Edinburgh Handedness Inventory (EHI) in both patients with a score of 100% (range ± 100%). MR examinations included morphologic imaging, functional motor mapping, MR angiography, and a brain perfusion study in both patients. Six healthy right-handed controls—four women, two men (mean age 35.8 ± 6.2 years/EHI: 100%)—underwent structural and functional MR imaging. All subjects gave their informed consent to participate in this study, which was approved by the local ethics committee.

fMRI. Motor mapping. A paced finger tapping task (2 Hz) was performed in response to a red and green visual stimulus using a blocked design.1 Right, left, and bimanual finger tapping were recorded and monitored online in three different scans against a resting baseline. A training test determined the patient’s ability to solve the task prior to the functional session. No mirror movements occurred in patients and controls. The experiments were carried out on a 3T scanner (Medspec 30/100, Bruker, Ettlingen, Germany). Sixteen axial slices (19.2 cm field of view, 64 by 64 matrix, 5 mm thickness, 2 mm spacing) parallel to the AC-PC plane were acquired using a single shot, gradient recalled echoplanar imaging (EPI) sequence (echo time [TE] = 30 msec, repetition time [TR] = 2 sec, 90° flip angle). Perfusion images were obtained by dynamic first-pass bolus tracking of Gd-DTPA with a gradient echo EPI sequence (TR/TE 1000/30). The contrast agent bolus (0.1 mmol/kg) was administered at a rate of 5 mL/sec by a power injector. Concentration time curves were processed to determine maximum peak (MP), mean transit time (MTT), and time-to-peak (TTP) maps following a pragmatic approach in the absence of arterial input function curves.5

Data analysis was performed with the LIPSIA software package,6 which implements the statistical routines of SPM. Statistical parametric maps were thresholded at p < 0.001 (uncorrected) at the voxel level. In order to reduce the probability of accepting false positives, only clusters of significant size (p < 0.025, corrected for multiple comparisons, as determined using the theory of Gaussian random fields)7 were considered for further analysis. Based on these thresholds motor activation vs resting baseline was separately assessed for each patient and the controls in a first step. In a second step a SPM analysis was performed contrasting the motor activation states of each patient against the corresponding...
activation in the control group. Significant differences in activation patterns of individual patients and controls were also assessed based on a time course analysis of averaged activation clusters in the primary motor cortices. Lateralization indices (LI) were calculated based on significantly activated voxels for each hemisphere and each condition (LI = nPr/nPl + nPl, range ± 1). Positive indices indicate a left, and negative a right hemisphere dominance for the motor activation.

Results. MR angiography and MR perfusion. MR angiography with Gd-DTPA revealed severe stenosis of the M1 segment of the MCA in both patients (Patient 1: right proximal MCA trunc with reduced filling in the A. sulci centralis and postcentralis; Patient 2: left distal MCA trunc without obvious filling deficits, figure 1).

An impairment of cerebral hemodynamics, restricted to the side of the MCA stenosis, was diagnosed in both patients on the MR perfusion study. TTP-map showed a mean delay of the gadolinium enhanced MR signal of 4.3 seconds in the right primary motor cortices (M1) area in Patient 1 (TTP right vs left: 34.5 vs 30.2 sec), and of 4.9 seconds in the left M1 area (27.2 vs 32.1 sec) in Patient 2 (see figure 1). Interhemispheric differences were also found in MTT (right vs left: 4.2 vs 5.9 sec and 6.3 vs 4.8 sec in Patients 1 and 2), but not in MP maps (MP right vs left: 0.41 vs 0.44 in Patient 1 and 0.38 vs 0.35 in Patient 2).

fMRI. Unilateral finger tapping was associated with a strong activation of the contralateral M1 in the control group. Cerebellar activation in response to unilateral finger tapping was strongly ipsilateral to the tapping hand. Bilateral finger tapping recruited additionally the supplementary motor area (SMA) (figure 2).

The statistical comparison of the various motor conditions of patients vs controls yielded significantly different patterns in both patients, when the hand contralateral to the stenosis performed the tapping task. Both patients showed a significantly stronger recruitment of additional ipsilateral M1, premotor cortex, and SMA, which was not found in the controls. Bilateral finger tapping was also associated with additional SMA and bilateral premotor cortex activation as compared to the controls. The overall contributions of the primary motor cortices in the hypoperfused hemisphere were smaller (p = 0.02) as compared to the unaffected hemisphere during finger tapping in both patients. Cerebellar activation in response to unilateral finger tapping was strongly ipsilateral to the moving hand and did not differ between patients and controls. Figure 2 summarizes the fMRI data of the patients and the control group.

The time course analysis of fMRI signal changes in the primary motor cortices yielded significant hemispheric differences between patients and controls. Expectedly, the M1 cortices of both hemispheres showed strongly crossed organization patterns in the controls when left and right finger tapping was performed. Major contributions came from M1 cortices contralateral to the tapping hand clearly following crossed motor organization patterns; i.e., 1.32% signal change in the right M1 was accompanied by 0.1% signal change in the left M1 during left hand finger tapping (see figure 2).

The expected scheme of crossed organization patterns was replaced by more bilateral and ipsilateral M1 contributions when the hand contralateral to the stenosis was performing the tapping task in both patients (see figure 2). Moreover, laterality assessment for the different tasks...
showed a reduced preponderance of the hypoperfused hemispheres in both patients when the corresponding hand was tapping (right vs left hand tapping: Patient 1: 0.62 vs −0.31; Patient 2: 0.12 vs −0.93; controls: 0.81 vs −0.66).

Discussion. This article provides strong evidence of a task-related modulation of the fMRI BOLD response in the presence of impaired hemodynamics. The activated motor cortices appeared structurally intact. Our main finding was that patients with MCA stenosis showed an increased engagement of M1 and premotor cortices in the intact hemisphere during a motor task. Probably, this additional activation—not present in normal controls—served the maintenance of function. Hence, in the presence of impaired hemodynamics, the principle of crossed motor organization patterns is abandoned as a compensatory strategy. This functional shift to ipsilateral homologous motor and premotor cortices was previously described as a compensatory strategy in patients with central lesions. It cannot be ruled out that the observed patterns evolved as reorganizational changes in the absence of major lesions.

Which mechanism accounts for the decrease in BOLD signal changes of the hypoperfused hemisphere in the patients? In a situation where the cerebral blood flow (CBF) is restricted, the close correspondence between neural activity and CBF—i.e., the neurovascular coupling—is deranged. Thus, failure to see normal activation does not necessarily indicate a lack of neuronal activity. The BOLD signal in the compromised hemisphere is therefore not clearly interpretable, regardless of whether the hemodynamic response is driven by local energy use on
the presynaptic level or by neurotransmitter related signaling processes as recently claimed.20

References

A randomized trial of botulinum toxin A for treatment of drooling

A. Lipp, MD; T. Trottenberg, MD; T. Schink; A. Kupsch, MD; and G. Arnold, MD

Abstract—The authors compared the efficacy of three different doses (18.75, 37.5, and 75 MU per parotid gland) of botulinum toxin A (BTX-A; Dysport, Ipsen Pharma, Germany) injections vs vehicle in patients with sialorrhea (n = 32) using a single-center, prospective, double-blind, placebo-controlled dose-finding study. The primary endpoint was achieved with 75 MU BTX-A without treatment-related adverse events, suggesting BTX-A is a safe and effective treatment for patients with sialorrhea.

NEUROLOGY 2003;61:1279–1281

Excess saliva and drooling are common complaints of patients with neurodegenerative disorders. Up to 80% of patients with Parkinson’s disease (PD)1 and approximately 20% of patients with motor neuron disease are affected by excess saliva and drooling.2 Pharmacotherapy is limited by insufficient efficacy and adverse effects. Surgical treatments like denervation of the parotid gland,3 salivary duct ligation,4 or bilateral excision of the sublingual salivary glands5 may risk irreversible adverse effects. Botulinum toxin A (BTX-A; Dysport, Ipsen Pharma, Germany) is a known inhibitor of acetylcholine release in cholinergic nerve terminals and is well known to effectively alleviate dystonic and spastic symptoms.6,7 Recently, several open-label studies reported decreased drooling after BTX-A injections into the parotid gland.8,9 However, placebo-controlled studies concerning dosages of BTX-A and duration of the clinical effect are not available.

The present study is a single-center, prospective, double-blind, placebo-controlled dose-finding study to test the efficacy and safety of three different doses of BTX-A (Dysport) in patients with sialorrhea.

Patients and methods. After approval by the local ethics committee, we examined 32 patients (23 men and 9 women) with severe drooling from our local movement disorder outpatient department (figure 1). Twelve patients had a bulbar form of ALS (mean severity of 27 points according to the ALS Functional Rating Scale [ALSFRS]); 12 patients had PD (mean motor impairment of 38 as measured by the Unified PD Rating Scale [UPDRS], part III); 4 patients had multiple system atrophy (MSA); and 4 patients had corticobasal degeneration (CBD; mean UPDRS III, 57 points). All patients had a loss of life quality because of drooling. Four weeks before the study and during the study, none of the patients received any antidrooling treatment other than the study drug.

After written informed consent, patients were randomized into one of four groups—placebo, 18.75, 37.5, or 75 MU BTX-A—for each parotid gland. Injection volumes were kept constant at 0.5 mL per side to assure blinding. We injected each parotid gland twice: one injection into the mass of the gland (0.3 mL) and an-
Correspondence to:

BRIEF COMMUNICATIONS:
M. Hund-Georgiadis, T. Mildner, D. Georgiadis, K. Weih, and D. Y. von Cramon
Impaired hemodynamics and neural activation?: A fMRI study of major cerebral artery stenosis
Neurology 2003; 61: 1276-1279

Correspondence published:

Impaired hemodynamics and neural activation?: A fMRI study of major cerebral artery stenosis
Iraj Derakhshan (4 December 2003)

Reply to Derakhshan
Margret Hund-Georgiadis, D. Yves von Cramon (4 December 2003)

The data presented by Hund-Georgiadis et al [1] may be interpreted differently than suggested by the authors. The authors report the possible reorganization of the command structure of motor control as a "reserve strategy" revealed in two (behavioral) right-handed patients with stenosis of the middle cerebral arteries.

Patient 2 had severe stenosis of the distal trunk of the left MCA (Fig 1 of the article). According to the data depicted in the bar graph for different conditions in Fig.2, patient 2 showed no statistically significant difference between the activities of M1 cortices of the two sides when tapping with his right hand. This is opposite to the reaction in patient 1 who was also a behavioral right hander whose "motor cortices were structurally intact."

The question that arises here relates to the anatomical underpinning of bilateral cortical activation or to cortical activation ipsilateral to the tapping hand when moving one or the other hand. This occurrence is indexed to laterality of motor control (in right- and left-handers) and has been interpreted as having "something to do with the use of the nondominant left hand". [2] Its occurrence in the reverse in "converted" left handers has also been documented. [3] Hund-Georgiadis et al reported this very phenomenon (activation of motor cortex ipsilateral to the tapping hand) in a behavioral right- (and neural left-) hander. [4] Moving the nondominant effectors is a bi-hemispheric event with signals
arising from the major hemisphere and then traversing the callosum for implementation by the minor hemisphere (evidenced in time-resolved studies). [5] Their patient 2 with bilateral cortical activation was not a real right-hander--but an ostensible one--and they should not have expected the same activation pattern as that observed in their patient 1 who was a real (i.e. neural) right-hander; regardless of the status of MCA in either case.

Similarly, the authors’ explanation that the activity patterns they depicted relate to a “redistribution of the motor network to the healthy hemisphere” is fraught with difficulty. For example, the nonexistence of ipsilateral control of volitional activity in humans; except those of the nondominant hand which will then involve the corpus callosum. [5] As for the results in the control subjects, statistically one of the six was a neural left hander [5]. This could have affected the normalized and averaged data presented.

References

Reply to Derakhshan

We thank Dr. Derakhshan for his comments regarding our article. He suggests a different interpretation of functional MRI activation data, at least for one of the reported patients of our previous study and implies that patient 2 of our study was actually a neural left-hander only masquerading behavioural right-handedness. Evidence for his assumption is derived from
an equal involvement of both motor cortices associated with right-hand motor tapping.

We demonstrated that our patient was right-handed by every type of behavioural testing and therefore suggested a functional redistribution within the motor network, which occurs prior to structural damage.[1] Previous electrophysiological research confirms our findings.[6]

Although Dr. Derakhshan's interpretation cannot be ruled out, it appears improbable for several reasons: First, the concept of a neural or converted left-handedness is at best speculative. So far, no comprehensive study has shown how to determine this dominance type beyond an arbitrary definition.

Second, Dr. Derakhshan's theory does not take into account the influence of impaired hemodynamics on fMRI-signal changes. The BOLD signal in a hypoperfused hemisphere is very difficult to interpret. In any case, failure to see normal activation in the hypoperfused hemisphere cannot be interpreted as a lack of neuronal activity. Only additional activations in the ipsi- and contralateral hemisphere should allow some conclusions, in particular when contrasted with normal control data.

Third, to support the theory of converted left-handedness, Dr. Derakhshan refers to our previous paper on mirrored brain organization in a typical right-hander with left hemisphere lesions.[7] Dr. Derakhshan insists that this patient was a neural left-hander. We can only point out, as we did in a previous correspondence [4], that our patient was a right-handed man, who showed crossed non-aphasia following left-hemisphere stroke.

While we appreciate Dr. Derakhshan's interest in our work, and find his interpretations intriguing, we must state that they are not supported by current data.

References

7.) Hund-Georgiadis M, Zysset S, Weih K, Guthke T, von Cramon DY. Crossed nonaphasia in a dextral with left hemispheric lesions: a functional magnetic resonance imaging study of mirrored brain organization. Stroke 2001; 32:2703-
2707.